Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608130

RESUMEN

The determination of physiological tolerance ranges of photosynthetic species and of the biochemical mechanisms underneath are fundamental to identify target processes and metabolites that will inspire enhanced plant management and production for the future. In this context, the terrestrial green algae within the genus Prasiola represent ideal models due to their success in harsh environments (polar tundras) and their extraordinary ecological plasticity. Here we focus on the outstanding Prasiola antarctica and compare two natural populations living in very contrasting microenvironments in Antarctica: the dry sandy substrate of a beach and the rocky bed of an ephemeral freshwater stream. Specifically, we assessed their photosynthetic performance at different temperatures, reporting for the first time gnsd values in algae and changes in thylakoid metabolites in response to extreme desiccation. Stream population showed lower α-tocopherol content and thicker cell walls and thus, lower gnsd and photosynthesis. Both populations had high temperatures for optimal photosynthesis (around +20°C) and strong constitutive tolerance to freezing and desiccation. This tolerance seems to be related to the high constitutive levels of xanthophylls and of the cylindrical lipids di- and tri-galactosyldiacylglycerol in thylakoids, very likely related to the effective protection and stability of membranes. Overall, P. antarctica shows a complex battery of constitutive and plastic protective mechanisms that enable it to thrive under harsh conditions and to acclimate to very contrasting microenvironments, respectively. Some of these anatomical and biochemical adaptations may partially limit photosynthesis, but this has a great potential to rise in a context of increasing temperature.

2.
Biodivers Data J ; 12: e106199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38344169

RESUMEN

Background: Incomplete species inventories for Antarctica represent a key challenge for comprehensive ecological research and conservation in the region. Additionally, data required to understand population dynamics, rates of evolution, spatial ranges, functional traits, physiological tolerances and species interactions, all of which are fundamental to disentangle the different functional elements of Antarctic biodiversity, are mostly missing. However, much of the fauna, flora and microbiota in the emerged ice-free land of the continent have an uncertain presence and/or unresolved status, with entire biodiversity compendia of prokaryotic groups (e.g. bacteria) being missing. All the available biodiversity information requires consolidation, cross-validation, re-assessment and steady systematic inclusion in order to create a robust catalogue of biodiversity for the continent. New information: We compiled, completed and revised eukaryotic species inventories present in terrestrial and freshwater ecosystems in Antarctica in a new living database: terrANTALife (version 1.0). The database includes the first integration in a compendium for many groups of eukaryotic microorganisms. We also introduce a first catalogue of amplicon sequence variants (ASVs) of prokaryotic biodiversity. Available compendia and literature to date were searched for Antarctic terrestrial and freshwater species, integrated, taxonomically harmonised and curated by experts to create comprehensive checklists of Antarctic organisms. The final inventories comprises 470 animal species (including vertebrates, free-living invertebrates and parasites), 306 plants (including all Viridiplantae: embryophytes and green algae), 997 fungal species and 434 protists (sensu lato). We also provide a first account for many groups of microorganisms, including non-lichenised fungi and multiple groups of eukaryotic unicellular species (Stramenophila, Alveolata and Rhizaria (SAR), Chromists and Amoeba), jointly referred to as "protists". In addition, we identify 1753 bacterial (obtained from 348117 ASVs) and 34 archaeal genera (from 1848 ASVs), as well as, at least, 14 virus families. We formulate a basic tree of life in Antarctica with the main lineages listed in the region and their "known-accepted-species" numbers.

3.
Mol Ecol Resour ; 24(2): e13909, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38063370

RESUMEN

We present here a complete system for metagenomic analysis that allows performing the sequencing and analysis of a medium-size metagenome in less than one day. This unprecedented development was possible due to the conjunction of state-of-the-art experimental and computational advances: a portable laboratory suitable for DNA extraction and sequencing with nanopore technology; the powerful metagenomic analysis pipeline SqueezeMeta, capable to provide a complete analysis in a few hours and using scarce computational resources; and tools for the automatic inspection of the results via a graphical user interface, that can be coupled to a web server to allow remote visualization of data (SQMtools and SQMxplore). We have tested the feasibility of our approach in the sequencing of the microbiota associated to volcanic rocks in La Palma, Canary Islands. Also, we did a two-day sampling campaign of marine waters in which the results obtained on the first day guided the experimental design of the second day. We demonstrate that it is possible to generate metagenomic information in less than one day, making it feasible to obtain taxonomic and functional profiles fast and efficiently, even in field conditions. This capacity can be used in the further to perform real-time functional and taxonomic monitoring of microbial communities in remote areas.


Asunto(s)
Metagenoma , Microbiota , Microbiota/genética , Metagenómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , España
4.
J Fungi (Basel) ; 9(12)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38132761

RESUMEN

This study explores the diversity of photobionts associated with the Mediterranean lichen-forming fungus Cladonia subturgida. For this purpose, we sequenced the whole ITS rDNA region by Sanger using a metabarcoding method for ITS2. A total of 41 specimens from Greece, Italy, France, Portugal, and Spain were studied. Additionally, two specimens from Spain were used to generate four cultures. Our molecular studies showed that the genus Myrmecia is the main photobiont of C. subturgida throughout its geographic distribution. This result contrasts with previous studies, which indicated that the main photobiont for most Cladonia species is Asterochloris. The identity of Myrmecia was also confirmed by ultrastructural studies of photobionts within the lichen thalli and cultures. Photobiont cells showed a parietal chloroplast lacking a pyrenoid, which characterizes the species in this genus. Phylogenetic analyses indicate hidden diversity within this genus. The results of amplicon sequencing showed the presence of multiple ASVs in 58.3% of the specimens studied.

5.
Sci Total Environ ; 897: 165318, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37422225

RESUMEN

The development of diagnostic methods to accurately assess the effects of treatments on lithobiont colonization remains a challenge for the conservation of Cultural Heritage monuments. In this study, we tested the efficacy of biocide-based treatments on microbial colonization of a dolostone quarry, in the short and long-term, using a dual analytical strategy. We applied a metabarcoding approach to characterize fungal and bacterial communities over time, integrated with microscopy techniques to analyze the interactions of microorganisms with the substrate and evaluate the effectiveness. These communities were dominated by the bacterial phyla Actinobacteriota, Proteobacteria and Cyanobacteria, and the fungal order Verrucariales, which include taxa previously reported as biodeteriogenic agents and observed here associated with biodeterioration processes. Following the treatments, changes over time in the abundance profiles depend on taxa. While Cyanobacteriales, Cytophagales and Verrucariales decreased in abundance, other groups, such as Solirubrobacteriales, Thermomicrobiales and Pleosporales increased. These patterns could be related not only to the specific effects of the biocide on the different taxa, but also to different recolonization abilities of those organisms. The different susceptibility to treatments could be associated with the inherent cellular properties of different taxa, but differences in biocide penetration to endolithic microhabitats could be involved. Our results demonstrate the importance of both removing epilithic colonization and applying biocides to act against endolithic forms. Recolonization processes could also explain some of the taxon-dependent responses, especially in the long-term. Taxa showing resistance, and those benefiting from nutrient accumulation in the form of cellular debris following treatments, may have an advantage in colonizing treated areas, pointing to the need for long-term monitoring of a wide range of taxa. This study highlights the potential utility of combining metabarcoding and microscopy to analyze the effects of treatments and design appropriate strategies to combat biodeterioration and establish preventive conservation protocols.


Asunto(s)
Ascomicetos , Cianobacterias , Desinfectantes , Desinfectantes/farmacología , Microscopía
6.
Mol Phylogenet Evol ; 185: 107829, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37247701

RESUMEN

Lichens thrive in rocky coastal areas in temperate and cold regions of both hemispheres. Species of the genus Lichina, which form characteristic black fruiting thalli associated with cyanobacteria, often create distinguishable bands in the intertidal and supralittoral zones. The present study uses a comprehensive specimen dataset and four gene loci to (1) delineate and discuss species boundaries in this genus, (2) assess evolutionary relationships among species, and (3) infer the most likely causes of their current geographic distribution in the Northern and Southern hemispheres. A dated phylogeny describes the time frame in which extant disjunctions of species and populations were established. The results showed that the genus is integrated by four species, with Lichina pygmaea, L. confinis and the newly described L. canariensis from rocky seashores in the Canary Islands, occurring in the Northern Hemisphere, whereas L. intermedia is restricted to the Southern Hemisphere. Lichina intermedia hosted a much higher intraspecific genetic diversity than the other species, with subclades interpreted as species-level lineages by the different species delimitation approaches. However, a conservative taxonomic approach was adopted. This species showed a striking disjunct distribution between Australasia and southern South America. The timing for the observed interspecific and intraspecific divergences and population disjunctions postdated continental plate movements, suggesting that long-distance dispersal across body waters in the two hemispheres played a major role in shaping the current species distributions. Such ocean crossings were, as in L. canariensis, followed by speciation. New substitution rates for the nrITS of the genus Lichina were inferred using a tree spanning the major Ascomycota lineages calibrated using fossils. In conclusion, this work lays the foundation for a better understanding of the evolution through time and space of maritime lichens.


Asunto(s)
Ascomicetos , Líquenes , Filogenia , Ascomicetos/genética , Líquenes/genética , Fósiles , Océanos y Mares , Filogeografía
8.
Nat Commun ; 14(1): 1706, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973286

RESUMEN

Soil contamination is one of the main threats to ecosystem health and sustainability. Yet little is known about the extent to which soil contaminants differ between urban greenspaces and natural ecosystems. Here we show that urban greenspaces and adjacent natural areas (i.e., natural/semi-natural ecosystems) shared similar levels of multiple soil contaminants (metal(loid)s, pesticides, microplastics, and antibiotic resistance genes) across the globe. We reveal that human influence explained many forms of soil contamination worldwide. Socio-economic factors were integral to explaining the occurrence of soil contaminants worldwide. We further show that increased levels of multiple soil contaminants were linked with changes in microbial traits including genes associated with environmental stress resistance, nutrient cycling, and pathogenesis. Taken together, our work demonstrates that human-driven soil contamination in nearby natural areas mirrors that in urban greenspaces globally, and highlights that soil contaminants have the potential to cause dire consequences for ecosystem sustainability and human wellbeing.


Asunto(s)
Ciudades , Ecosistema , Internacionalidad , Parques Recreativos , Contaminantes del Suelo , Suelo , Microbiota , Factores Socioeconómicos , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Plásticos
9.
Microb Ecol ; 86(3): 1893-1908, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36802019

RESUMEN

Cryptogamic covers extend over vast polar tundra regions and their main components, e.g., bryophytes and lichens, are frequently the first visible colonizers of deglaciated areas. To understand their role in polar soil development, we analyzed how cryptogamic covers dominated by different bryophyte lineages (mosses and liverworts) influence the diversity and composition of edaphic bacterial and fungal communities as well as the abiotic attributes of underlying soils in the southern part of the Highlands of Iceland. For comparison, the same traits were examined in soils devoid of bryophyte covers. We measured an increase in soil C, N, and organic matter contents coupled with a lower pH in association with bryophyte cover establishment. However, liverwort covers showed noticeably higher C and N contents than moss covers. Significant changes in diversity and composition of bacterial and fungal communities were revealed between (a) bare and bryophyte-covered soils, (b) bryophyte covers and the underlying soils, and (c) moss and liverworts covers. These differences were more obvious for fungi than bacteria, and involved different lineages of saprotrophic and symbiotic fungi, which suggests a certain specificity of microbial taxa to particular bryophyte groups. In addition, differences observed in the spatial structure of the two bryophyte covers may be also responsible for the detected differences in microbial community diversity and composition. Altogether, our findings indicate that soil microbial communities and abiotic attributes are ultimately affected by the composition of the most conspicuous elements of cryptogamic covers in polar regions, which is of great value to predict the biotic responses of these ecosystems to future climate change.


Asunto(s)
Briófitas , Hepatophyta , Microbiota , Micobioma , Islandia , Suelo , Bacterias/genética , Microbiología del Suelo
10.
Nature ; 610(7933): 693-698, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36224389

RESUMEN

Soils are the foundation of all terrestrial ecosystems1. However, unlike for plants and animals, a global assessment of hotspots for soil nature conservation is still lacking2. This hampers our ability to establish nature conservation priorities for the multiple dimensions that support the soil system: from soil biodiversity to ecosystem services. Here, to identify global hotspots for soil nature conservation, we performed a global field survey that includes observations of biodiversity (archaea, bacteria, fungi, protists and invertebrates) and functions (critical for six ecosystem services) in 615 composite samples of topsoil from a standardized survey in all continents. We found that each of the different ecological dimensions of soils-that is, species richness (alpha diversity, measured as amplicon sequence variants), community dissimilarity and ecosystem services-peaked in contrasting regions of the planet, and were associated with different environmental factors. Temperate ecosystems showed the highest species richness, whereas community dissimilarity peaked in the tropics, and colder high-latitudinal ecosystems were identified as hotspots of ecosystem services. These findings highlight the complexities that are involved in simultaneously protecting multiple ecological dimensions of soil. We further show that most of these hotspots are not adequately covered by protected areas (more than 70%), and are vulnerable in the context of several scenarios of global change. Our global estimation of priorities for soil nature conservation highlights the importance of accounting for the multidimensionality of soil biodiversity and ecosystem services to conserve soils for future generations.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Mapeo Geográfico , Microbiología del Suelo , Suelo , Animales , Conservación de los Recursos Naturales/métodos , Suelo/parasitología , Invertebrados , Archaea
11.
Environ Microbiol ; 24(2): 967-980, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34110072

RESUMEN

Throughout the Negev Desert highlands, thousands of ancient petroglyphs sites are susceptible to deterioration processes that may result in the loss of this unique rock art. Therefore, the overarching goal of the current study was to characterize the composition, diversity and effects of microbial colonization of the rocks to find ways of protecting these unique treasures. The spatial organization of the microbial colonizers and their relationships with the lithic substrate were analysed using scanning electron microscopy. This approach revealed extensive epilithic and endolithic colonization and close microbial-mineral interactions. Shotgun sequencing analysis revealed various taxa from the archaea, bacteria and some eukaryotes. Metagenomic coding sequences (CDS) of these microbial lithobionts exhibited specific metabolic pathways involved in the rock elements' cycles and uptake processes. Thus, our results provide evidence for the potential participation of the microorganisms colonizing these rocks during different solubilization and mineralization processes. These damaging actions may contribute to the deterioration of this extraordinary rock art and thus threaten this valuable heritage. Shotgun metagenomic sequencing, in conjunction with the in situ scanning electron microscopy study, can thus be considered an effective strategy to understand the complexity of the weathering processes occurring at petroglyph sites and other cultural heritage assets.


Asunto(s)
Bacterias , Metagenómica , Israel , Microscopía Electrónica de Rastreo
12.
Microb Ecol ; 83(4): 1036-1048, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34312709

RESUMEN

The ventral surfaces of translucent rocks from hot desert pavements often harbor hypolithic microbial communities, which are mostly dominated by cyanobacteria. The Namib Desert fog belt supports extensive hypolithic colonization of quartz rocks, which are also colonized by lichens on their dorsal surfaces. Here, we aim to evaluate whether lichens colonize the ventral surface of the rocks (i.e., show hypolithic lifestyle) and compare the bacterial composition of these coastal hypolithic communities with those found inland. Fungal DNA barcoding and fungal and bacterial Illumina metabarcoding were combined with electron microscopy to characterize the composition and spatial structure of hypolithic communities from two (coastal and inland) areas in the Namib Desert. We report, for the first time, the structure and composition of lichen-dominated hypolithic communities found in the coastal zone of the Namib Desert with extensive epilithic lichen cover. Lichen modified areoles with inverted morphology of the genus Stellarangia (three lineages) and Buellia (two lineages) were the main components of these hypolithic communities. Some of these lineages were also found in epilithic habitats. These lichen-dominated hypolithic communities differed in structural organization and bacterial community composition from those found in inland areas. The hypolithic lichen colonization characterized here seems not to be an extension of epilithic or biological soil crust lichen growths but the result of specific sublithic microenvironmental conditions. Moisture derived from fog and dew could be the main driver of this unique colonization.


Asunto(s)
Cianobacterias , Líquenes , Cianobacterias/genética , Clima Desértico , Ecosistema , Microbiología del Suelo
13.
Biology (Basel) ; 10(4)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918726

RESUMEN

Microbial communities found in arid environments are commonly represented by biological soil crusts (BSCs) and endolithic assemblages. There is still limited knowledge concerning endoliths and BSCs occurring in the cold mountain desert of Pamir. The aim of the study was to investigate the composition and structure of endolithic bacterial communities in comparison to surrounding BSCs in three subregions of the Eastern Pamir (Tajikistan). The endolithic and BSC communities were studied using culture-independent and culture-dependent techniques. The structure of the endolithic bacterial communities can be characterized as Actinobacteria-Proteobacteria-Bacteroidetes-Chloroflexi-Cyanobacteria, while the BSCs' can be described as Proteobacteria-Actinobacteria-Bacteroidetes-Cyanobacteria assemblages with low representation of other bacteria. The endolithic cyanobacterial communities were characterized by the high percentage of Chroococcidiopsaceae, Nodosilineaceae, Nostocaceae and Thermosynechococcaceae, while in the BSCs were dominated by Nodosilineaceae, Phormidiaceae and Nostocaceae. The analysis of 16S rRNA genes of the cyanobacterial cultures revealed the presence of possibly novel species of Chroococcidiopsis, Gloeocapsopsis and Wilmottia. Despite the niches' specificity, which is related to the influence of microenvironment factors on the composition and structure of endolithic communities, our results illustrate the interrelation between the endoliths and the surrounding BSCs in some regions. The structure of cyanobacterial communities from BSC was the only one to demonstrate some subregional differences.

14.
FEMS Microbiol Lett ; 368(3)2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33507249

RESUMEN

Polar glacier forefields offer an unprecedented framework for studying community assembly processes in regions that are geographically and climatically isolated. Through amplicon sequence variant (ASV) inference, we compared the composition and structure of soil bacterial communities from glacier forefields in Iceland and Antarctica to assess overlap between communities and the impact of established cryptogamic covers on the uniqueness of their taxa. These pioneer microbial communities were found to share only 8% of ASVs and each taxonomic group's contribution to the shared ASV data subset was heterogeneous and independent of their relative abundance. Although the presence of ASVs specific to one glacier forefield and/or different cryptogam cover values confirms the existence of habitat specialist bacteria, our data show that the influence of cryptogams on the edaphic bacterial community structure also varied also depending on the taxonomic group. Hence, the establishment of distinct cryptogamic covers is probably not the only factor driving the uniqueness of bacterial communities at both poles. The structure of bacterial communities colonising deglaciated areas seems also conditioned by lineage-specific limitations in their dispersal capacity and/or their establishment and persistence in these isolated and hostile regions.


Asunto(s)
Bacterias/genética , Biodiversidad , Cubierta de Hielo/microbiología , Microbiología del Suelo , Regiones Antárticas , Regiones Árticas , Bacterias/clasificación , ARN Ribosómico 16S/genética
15.
Mol Phylogenet Evol ; 155: 107020, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33242583

RESUMEN

Widespread geographic distributions in lichens have been usually explained by the high dispersal capacity of their tiny diaspores. However, recent phylogenetic surveys have challenged this assumption and provided compelling evidence for cryptic speciation and more restricted distribution ranges in diverse lineages of lichen-forming fungi. To evaluate these scenarios, we focus on the fungal genus Pseudephebe (Parmeliaceae) which includes amphitropical species, a distribution pattern whose origin has been a matter of debate since first recognized in the nineteenth century. In our study, a six-locus dataset and a broad specimen sampling covering almost all Earth's continents is used to investigate species delimitation in Pseudephebe. Population structure, gene flow and dating analyses, as well as genealogical reconstruction methods, are employed to disentangle the most plausible transcontinental migration routes, and estimate the timing of the origin of the amphitropical distribution and the Antarctic populations. Our results demonstrate the existence of three partly admixed phylogenetic species that diverged between the Miocene and Pliocene, and whose Quaternary distribution has been strongly driven by glacial cycles. Pseudephebe minuscula is the only species showing an amphitropical distribution, with populations in Antarctica, whereas the restricted distribution of P. pubescens and an undescribed Alaskan species might reflect the survival of these species in European and North American refugia. Our microevolutionary analyses suggest a Northern Hemisphere origin for P. minuscula, which could have dispersed into the Southern Hemisphere directly and/or through "mountain-hopping" during the Pleistocene. The Antarctic populations of this species are sorted into two genetic clusters: populations of the Antarctic Peninsula were grouped together with South American ones, and the Antarctic Continental populations formed a second cluster with Bolivian and Svalbard populations. Therefore, our data strongly suggest that the current distribution of P. minuscula in Antarctica is the outcome of multiple, recent colonizations. In conclusion, our results stress the need for integrating species delimitation and population analyses to properly approach historical biogeography in lichen-forming fungi.


Asunto(s)
Especiación Genética , Líquenes/clasificación , Parmeliaceae/clasificación , Regiones Antárticas , Ecosistema , Haplotipos/genética , Filogenia , Filogeografía , Polimorfismo Genético , Análisis de Secuencia de ADN , Especificidad de la Especie , Factores de Tiempo
16.
Sci Total Environ ; 762: 143169, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33131854

RESUMEN

We still lack studies that provide evidence for direct links between the development of soil surface cryptogamic communities and soil attributes and functioning. This is particularly true in areas free of potentially confounding factors such as different soil types, land uses, or anthropogenic disturbances. Despite the ecological importance of polar ecosystems and their sensitivity to climate change, we are far from understanding how their soils function and will respond to climate change-driven alterations in above- and belowground features. We used two complementary approaches (i.e. cover gradients in the forefront of retreating glaciers as well as long-time deglaciated areas with well-developed cryptogamic cover types) to evaluate the role of cryptogams driving multiple soil biotic and abiotic attributes and functioning rates in polar terrestrial ecosystems. Increases in cryptogamic cover were consistently related to increases in organic matter accumulation, soil fertility, and bacterial diversity, but also in enhanced soil functioning rates in both sampling areas. However, we also show that the ability to influence soil attributes varies among different polar cryptogamic covers, indicating that their differential ability to thrive under climate-change scenarios will largely determine the fate of polar soils in coming decades.


Asunto(s)
Ecosistema , Suelo , Biodiversidad , Cambio Climático , Microbiología del Suelo
17.
Mycologia ; 113(1): 108-133, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33232202

RESUMEN

In an era of rapid climate change and expansion of desertification, the extremely harsh conditions of drylands are a true challenge for microbial life. Under drought conditions, where most life forms cannot survive, rocks represent the main refuge for life. Indeed, the endolithic habitat provides thermal buffering, physical stability, and protection against incident ultraviolet (UV) radiation and solar radiation and, to some extent, ensures water retention to microorganisms. The study of these highly specialized extreme-tolerant and extremophiles may provide tools for understanding microbial interactions and processes that allow them to keep their metabolic machinery active under conditions of dryness and oligotrophy that are typically incompatible with active life, up to the dry limits for life. Despite lithobiontic communities being studied all over the world, a comprehensive understanding of their ecology, evolution, and adaptation is still nascent. Herein, we survey the fungal component of these microbial ecosystems. We first provide an overview of the main defined groups (i.e., lichen-forming fungi, black fungi, and yeasts) of the most known and studied Antarctic endolithic communities that are almost the only life forms ensuring ecosystem functionality in the ice-free areas of the continent. For each group, we discuss their main traits and their diversity. Then, we focus on the fungal taxonomy and ecology of other worldwide endolithic communities. Finally, we highlight the utmost importance of a global rock survey in order to have a comprehensive view of the diversity, distribution, and functionality of these fungi in drylands, to obtain tools in desert area management, and as early alarm systems to climate change.


Asunto(s)
Clima Desértico , Ambientes Extremos , Hongos , Adaptación Fisiológica , Regiones Antárticas , Biodiversidad , Cambio Climático , Sequías , Hongos/clasificación , Hongos/aislamiento & purificación , Sedimentos Geológicos/microbiología , Líquenes
18.
Microorganisms ; 9(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375046

RESUMEN

Microorganisms can survive in extreme environments and oligotrophic habitats thanks to their specific adaptive capacity. Due to its severe and contrasting climate conditions, the cold mountain desert in Eastern Pamir provides a unique environment for analyzing microbial adaptation mechanisms occurring within colonization of endolithic habitats. This study aims to investigate the composition and structure of endolithic microbial communities and analyze the interactions between microorganisms and colonized lithic substrates. Endolithic biofilms were examined using scanning electron microscopy in backscattered electron mode (SEM-BSE) and next-generation sequencing (NGS) applying amplicon sequence variants (ASVs) approach. The investigation of the V3-V4 region of 16S rRNA gene revealed that endolithic communities are dominated by Actinobacteria (26%), Proteobacteria (23%), and Cyanobacteria (11.4%). Cyanobacteria were represented by Oxyphotobacteria with a predominance of subclasses of Oscillatoriophycidae, Synechococcophycideae, and Nostocophycidae as well as the rarely occurring Sericytochromatia. The positive correlation between the contribution of the orders Synechococcales and Rhizobiales to community structure suggests that some functionally closed taxa of Cyanobacteria and Proteobacteria can complement each other, for example, in nitrogen fixation in endolithic communities. The endolithic communities occurring in Eastern Pamir were identified as complex systems whose composition and structure seem to be influenced by the architecture of microhabitats and related microenvironmental conditions.

19.
Front Microbiol ; 11: 126, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117148

RESUMEN

Glacier forefields provide a unique chronosequence to assess microbial or plant colonization and ecological succession on previously uncolonized substrates. Patterns of microbial succession in soils of alpine and subpolar glacier forefields are well documented but those affecting high polar systems, including moraine rocks, remain largely unexplored. In this study, we examine succession patterns in pioneering bacterial, fungal and algal communities developing on moraine rocks and soil at the Hurd Glacier forefield (Livingston Island, Antarctica). Over time, changes were produced in the microbial community structure of rocks and soils (ice-free for different lengths of time), which differed between both substrates across the entire chronosequence, especially for bacteria and fungi. In addition, fungal and bacterial communities showed more compositional consistency in soils than rocks, suggesting community assembly in each niche could be controlled by processes operating at different temporal and spatial scales. Microscopy revealed a patchy distribution of epilithic and endolithic lithobionts, and increasing endolithic colonization and microbial community complexity along the chronosequence. We conclude that, within relatively short time intervals, primary succession processes at polar latitudes involve significant and distinct changes in edaphic and lithic microbial communities associated with soil development and cryptogamic colonization.

20.
Ann Bot ; 124(7): 1211-1226, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31549137

RESUMEN

BACKGROUND AND AIMS: Lichens represent a symbiotic relationship between at least one fungal and one photosynthetic partner. The association between the lichen-forming fungus Mastodia tessellata (Verrucariaceae) and different species of Prasiola (Trebouxiophyceae) has an amphipolar distribution and represents a unique case study for the understanding of lichen symbiosis because of the macroalgal nature of the photobiont, the flexibility of the symbiotic interaction and the co-existence of free-living and lichenized forms in the same microenvironment. In this context, we aimed to (1) characterize the photosynthetic performance of co-occurring populations of free-living and lichenized Prasiola and (2) assess the effect of the symbiosis on water relations in Prasiola, including its tolerance of desiccation and its survival and performance under sub-zero temperatures. METHODS: Photochemical responses to irradiance, desiccation and freezing temperature and pressure-volume curves of co-existing free-living and lichenized Prasiola thalli were measured in situ in Livingston Island (Maritime Antarctica). Analyses of photosynthetic pigment, glass transition and ice nucleation temperatures, surface hydrophobicity extent and molecular analyses were conducted in the laboratory. KEY RESULTS: Free-living and lichenized forms of Prasiola were identified as two different species: P. crispa and Prasiola sp., respectively. While lichenization appears to have no effect on the photochemical performance of the alga or its tolerance of desiccation (in the short term), the symbiotic lifestyle involves (1) changes in water relations, (2) a considerable decrease in the net carbon balance and (3) enhanced freezing tolerance. CONCLUSIONS: Our results support improved tolerance of sub-zero temperature as the main benefit of lichenization for the photobiont, but highlight that lichenization represents a delicate equilibrium between a mutualistic and a less reciprocal relationship. In a warmer climate scenario, the spread of the free-living Prasiola to the detriment of the lichen form would be likely, with unknown consequences for Maritime Antarctic ecosystems.


Asunto(s)
Chlorophyta , Líquenes , Regiones Antárticas , Ecosistema , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...